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ABSTRACT

Using molecular simulations and a modified Classical Nucleation Theory, we study the nucleation,
under flow, of a variety of liquids: different water models, Lennard-Jones and hard sphere colloids.
Our approach enables us to analyze a wide range of shear rates inaccessible to brute-force simulations.
Our results reveal that the variation of the nucleation rate with shear is universal. A simplified version
of the theory successfully captures the non-monotonic temperature dependence of the nucleation
behavior, which is shown to originate from the violation of the Stokes-Einstein relation.
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1 Introduction

The nucleation of quiescent systems, at molecular scales, is of major interest and has been the focus of intense research
[1]. However, in nature and in practice, static fluids are rarely involved; realistic systems almost always exist in a state
of flux. The study of the effects of shear on nucleation is a burgeoning field, with far-reaching implications for industry
and several branches of science. Despite investigations in this direction, the literature is rife with controversial results.
Some studies indicate that the presence of shear inhibits the nucleation rate [2, 3], while others assert that the nucleation
rate is enhanced by shear [4–10]. A non-monotonic dependence of the induction times for nucleation has also been
reported in experiments [11, 12].

The homogeneous nucleation of the sheared Ising model [13], colloidal models [14, 15], hard spheres (HS) [16–18],
glassy systems [19, 20], a binary-alloy [21], and more recently mW water under shear [22, 23], has been studied using
theory and simulations. Water is a highly anomalous liquid exhibiting several anomalies in the supercooled regime
[24], but efforts have not been made to distinguish the nature of the shear-dependent nucleation behavior of water, or to
generalize shared traits. However, existing literature implies that the nucleation rate for liquids, including water, is
non-monotonic with shear [14–23].

In this work, we generalize the phenomenon of shear-induced nucleation by revealing the underlying universality of the
same. Recently we formulated a Classical Nucleation Theory (CNT), extended to explicitly incorporate shear [23].
Here, we show the generality of this approach (henceforth referred to as ’shear-CNT’), using it to explain the effects of
shear on various systems: the rigid water models TIP4P/2005 [25], TIP4P/Ice [26], the coarse-grained mW water model
[27], the Lennard-Jones (LJ) fluid [28], and a HS colloid. We examine, in detail, the dual effects of temperature and
shear on the nucleation rates for water and LJ fluid, explore the provenance of anomalies, and highlight the universality
in the nucleation behavior.
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2 Theory and Methods

The free energy of a crystal nucleus in a bulk homogeneous nucleating system, under the effect of a simple volume-
preserving shear γ̇, is given by [17]:

F (R) = −4

3
πR3 |∆µ0|

v′
+ 4πR2σ0

[
1 +

7

24
(τ γ̇)2

]
+

1

2
G(τ γ̇)2 4

3
πR3, (1)

where F (R) is the free energy of formation of a cluster of radius R, |∆µ0| is the chemical potential difference between
the thermodynamically stable crystal phase and the metastable liquid phase when no shear is applied, σ0 is the surface
tension or the interfacial free energy of the nucleus at zero shear, v′ is the volume of one molecule in the crystal phase,
G is the shear modulus of the nucleus, and τ is a characteristic time defined as τ = η

G , where η is the fluid viscosity.

Homogeneous nucleation is an activated process, exhibiting a maximum in the free energy at a critical nucleus size N∗.
The height of the free energy barrier for nucleation, corresponding to this critical nucleus size N∗, is obtained from

F (N∗) =
N∗0 |∆µ0|

2

[1 + 7
24 (τ γ̇)2]3[

1− v′G
2|∆µ0| (τ γ̇)2

]2 , (2)

where N∗0 =
32πσ3

0v
′2

3|∆µ0|3 is the critical nucleus size at zero shear.

The steady-state nucleation rate, J , can be estimated using the following familiar CNT-based expression [23]:

J = ρlZf
+e
−F (N∗)

kBT , (3)

where the nucleation rate J is the current or flux across the free energy barrier, in the cluster-size space and is in units
of the number of nucleation events per unit volume per unit time, f+ is the rate of attachment of particles to the critical
cluster, ρl is the number density of the supercooled liquid, and Z is the Zeldovich factor. Z captures the probability of
multiple re-crossings of the energy barrier[29].

The expression for the shear rate-dependent attachment rate f+ is given by [23]:

f+ =
24Dl

λ2
(N∗)

2
3

[
1 +

7

24
(τ γ̇)2

]
, (4)

where Dl is the two-dimensional diffusion coefficient of the supercooled liquid phase for a particular shear rate and
temperature T , and λ is the atomic ‘jump length’, estimated to be about one molecule diameter.

It has been shown earlier that the diffusion coefficient varies linearly with shear rates, at a constant temperature, for the
mW model [23]:

Dl = D0 + cγ̇, (5)

where D0 is the diffusion coefficient when the shear rate is zero, and c is a fitting parameter with units of squared length.
We observe that Eq. (5) holds true for TIP4P/2005, TIP4P/Ice, mW and LJ. We have estimated c for these systems by
fitting Dl, from out non-equilibrium molecular dynamics (NEMD) simulations, to Eq. (5). Such a linear behavior is
predicted for a suspension of particles, which also provide the following estimate for c [30, 31]:

c = Kca
2φ, (6)

where a is the particle diameter, φ is the volume fraction, and Kc is a constant. We have used a value of Kc = 0.4,
which has been successfully used for suspensions [30] and blood [31]. In this letter, for hard-sphere colloids, we
use Eq (6) to estimate the value of c. D0 is calculated using the Stokes-Einstein relation, given by D0 = (ρl)

1
3
kBT
6η ,

modified for hard spheres [32].

We note that the shear rates considered in this study are low enough to safely assume that the fluids exhibit Newtonian
behavior. Further, we assume that the shear modulus G of the nuclei is isotropic, which may not be strictly true for ice.
However, the variations in G for both hexagonal ice and amorphous ice are within the range of 3− 4.5 GPa [33–35],
which does not significantly impact the calculated nucleation rates [23].
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Figure 1: Variation of the normalized nucleation rate with the normalized shear rate, γ̇/γ̇opt at selected metastabilities,
plotted alongside the corresponding parabolic fit. Eq. (7) has been denoted by a solid black line, and filled markers
symbolize the nucleation rates calculated using shear-CNT for various systems and metastabilities. Black open squares
show the data for the mW model estimated by Luo et. al. [22], for a supercooling of 67.6 K, using brute-force NEMD
to calculate and fit to the induction times [37]. Open turquoise circles depict the data for a sheared two-dimensional
Ising model, obtained using Forward-Flux Sampling [38], by Allen et. al. [13]

3 Results and Discussion

The shear-CNT formulation predicts that the nucleation rate J has a non-monotonic nature with respect to the shear rate,
owing to competing energetic and kinetic effects. Eq. (2) shows that the free energy barrier will rise with increasing
shear rates. Eq. (4) indicates that f+ will increase, due to the increase in both Dl and N∗. The net effect is that of a
maximum in J (Eq. (3)) at some particular shear rate.

To analyze the non-monotonicity, we introduce a min-max normalized [36] nucleation rate, J−J0
Jmax−J0 , defined with

respect to J0, the nucleation rate at zero shear, and Jmax, the highest nucleation rate observed at a particular temperature
[23]. The optimal shear rate, γ̇opt, is defined as the shear rate for which J−J0

Jmax−J0 is maximized.

We observe that, for all the systems studied in this work, parabolic fits approximate the nucleation rate behavior with
excellent agreement. A parabolic law, with respect to the dimensionless shear γ̇

γ̇opt
, of the following form can describe

the nucleation behavior at a particular temperature T and supercooling ∆T :

J − J0

Jmax − J0
= 1−

(
γ̇

γ̇opt
− 1

)2

, (7)

The vertex of this parabola is at unity. We recover a family of parabolas with vertices at γ̇opt, at every temperature, if
J−J0

Jmax−J0 is plotted against γ̇.

Figure 1 depicts the universality in the normalized nucleation rate, generated by the superposition of available data for
the water models, LJ fluid and hard spheres. These include our results, as well as those of earlier studies by other groups
[13, 22]. We infer the existence of a single maximum nucleation rate, at any given metastability, for every system. For
shear rates higher than γ̇opt, the nucleation rate decreases. Despite the complex interactions of shear-dependent terms in
Eq. (3), the simple functional form of Eq. (7) works well for all systems. These results indicate that this behavior is
fundamental to Newtonian fluids.

A previous study on the mW model suggests that the shear-dependent nucleation rates have a non-linear dependence on
the temperature [23]. This could arise from the inclusion of several temperature-dependent parameters in the expression
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Figure 2: (a) Dependence of τ γ̇opt on the percent supercooling, Tm−T
Tm
×100%, for TIP4P/2005, TIP4P/Ice, mW and LJ.

Filled and open markers represent values calculated using shear-CNT, with input data calculated from simulations and
with approximated inputs, respectively. The solid lines denote τ γ̇opt estimated using the simplified theory, Eq. (9). (b)

Variation of B =
(
kBT
D0η

c
v′

)
with the percent supercooling. The inset shows N∗0 plotted against the percent supercooling.

(c) Test of the Stokes-Einstein (SE) relation, according to which kBT
D0η

should be constant. SE relation is clearly violated
for the water models for the supercoolings considered. Data for which the values of η, D0, c and v′ were calculated
using simulation data are denoted by filled markers, and dashed lines show values calculated using approximations.

for the nucleation rate (Eq. (3)). Scrutiny of Eq. (1), Eq. (2) and Eq. (4) reveals the recurring dimensionless group τ γ̇.
The temperature dependence of the nucleation behavior under shear is embodied by the dimensionless product, τ γ̇opt,
where γ̇opt depends on the temperature as well as the nature of the system. However, the transcendental nature of the
nucleation rate expression prevents us from directly solving an analytical expression for τ γ̇opt.

In order to further simplify the governing equations of the shear-CNT formalism and obtain a relation for τ γ̇opt, we
examine the order of magnitudes for the various parameters in the equations involved. For water, LJ and HS, the shape

factor is ≈ 1 for the highest shear rates considered. For γ̇ < 1
η

(
2G|∆µ0|

v′

) 1
2

, we can use a binomial expansion for the
denominator in Eq. (2). Subsequently expanding the exponential in Eq. (3), we finally obtain a simplified expression for
J :

J = J0

(
1 +

c

D0

)[
1− N∗0 v

′G

2kBT
(τ γ̇)2

]
, (8)

where J0 is the nucleation rate when the shear rate is zero. We note that, although Eq. (8) is cubic in γ̇, there exists only
one positive root γ̇opt. This is reflected by the existence of a single maximum in the master curve for the normalized
nucleation rate, shown in Fig. 1.

As the magnitude of the dimensionless term 6c2GkBT
N∗0 v

′(D0η)2 is one and two orders of magnitude lower than unity for the
water models and LJ, respectively, we obtain the following relation for τ γ̇opt:

τ γ̇opt =

(
kBT

D0η

c

v′

)
× 1

N∗0
, (9)

where we define B =
(
kBT
D0η

c
v′

)
, which is a dimensionless group related to the transport properties. N∗0 is dependent

on the thermodynamic properties. η and D0 are approximated by power law fits. Second-order polynomials suffice to
approximate the densities [39]. Linear fits to σ0 [39], |∆µ0|, c, are used to obtain the predicted values. To compare the
behavior of the water models and LJ fluid, we define the percent supercooling with respect to the melting point, Tm, for
each model.
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Figure 2(a) shows the variation in τ γ̇opt with percent supercooling for the water models and LJ. The simplified Eq. (9)
performs well for the models considered (denoted by lines in Fig. 2). τ γ̇opt exhibits a single maximum for every water
model. In particular, the rigid water models show nearly identical behavior. We also note that every system shows
monotonic increase in the limit of 10% supercooling. However, the τ γ̇opt curve for LJ shows a qualitatively different
trend compared to the water models for higher supercooling.

Figure 2(b) depicts the dependence of the dimensionless group B on the percent supercooling. The non-monotonic
behavior of B for the water models closely mirrors that of τ γ̇opt in Fig. 2(a). Concomitantly, we attribute the trend in
τ γ̇opt for LJ to the monotonic behavior of B. The inset of Fig 2(b) shows a nearly universal trend of N∗0 with percent
supercooling.

Furthermore, our analysis shows that the origin of the divergent trends in B (Fig. 2(b)) lies in the Stokes-Einstein
(SE) relation. Anomalous transport properties of supercooled liquids are often characterized by SE violation [40–48].
According to the SE relation, the following expression holds true at all temperatures [49, 50]:

D0 ∝
kBT

η
, (10)

which implies that, if the SE relation is valid, the term kBT
D0η

is constant.

Figure 2(c) depicts the variation of kBT
D0η

with percent supercooling. The SE relation breaks down spectacularly for
supercooled water [48, 51–53], as shown by maxima in the kBT

D0η
curves for TIP4P/2005, TIP4P/Ice and mW. These are

directly reflected by the maxima of B and τ γ̇opt for the water models. In contrast, kBTD0η
is relatively constant for LJ

(Fig. 2(c)), which suggests that the SE relation is preserved, in the case of the LJ fluid, for the supercoolings considered
in this work. We surmise that the temperature dependence of the nucleation behavior is strongly linked to the violation
or preservation of the SE relation, and thus depends solely on the behavior of flow properties. The decoupling of D0

and η, typified by the SE violation, is thought to originate from spatial heterogeneities in the dynamics of strongly
supercooled glass-forming liquids [40, 44, 46, 48, 53–55].

4 Conclusions

In conclusion, we have reported the effects of shear on the nucleation rates at different temperatures, for the TIP4P/2005,
TIP4P/Ice, mW water models, LJ fluid and HS colloids. Nucleation events at low and moderate supercoolings are
notoriously difficult to simulate, and such extensive calculations are virtually intractable using brute-force molecular
dynamics. By employing the shear-CNT formalism, based on modified CNT equations, we were able to obtain
nucleation rate curves for several metastable conditions.

In accordance with previous simulation results for colloids, glassy systems, the Ising model, and mW water [13, 16,
17, 22, 23], we confirmed that the nucleation rate curves exhibit non-monotonic behavior with shear, at a particular
supercooling. We generated a "universal" master curve for the normalized nucleation rate J−J0

Jmax−J0 with γ̇/γ̇opt. Despite
the complicated dependence of shear in the transcendental equation for the nucleation rate, parabolic fits yield excellent
agreement to the nucleation rate curves and are valid for every system considered in this work. We infer that the
existence of a maximum in the nucleation rate with shear is a universal property of systems that obey CNT.

We systematically investigated the temperature dependence of the nucleation rate curves for TIP4P/2005, TIP4P/Ice,
mW and LJ by examining the behavior of the dimensionless group τ γ̇opt. To this end, we derived a simplified theory
describing the governing equations of shear-CNT. An approximate relation for τ γ̇opt was obtained, expressed as a
product of two dimensionless groups: B, which is related to transport properties, and the thermodynamic quantity 1/N∗0 .
The analysis reveals that the behavior of τ γ̇opt is solely determined by the nature of B. The anomalous temperature
dependence of the nucleation behavior of water originates from the SE violation. We discovered that universal behavior
is recovered for N∗0 , for every system.

Thus, we have uncovered underlying commonalities and determined the origin of anomalies in the nucleation behavior
for several supercooled molecular systems under shear. Our results provide insight into the previously unexplored,
intriguingly complex interplay of temperature and shear, affecting the nucleation rate.
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